1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
//! Implements type unification, used by the Hindley-Milner type inference algorithm
//!
//! Inspired by [rust-hindley-milner][1] and [hindley-milner-python][2]
//!
//! [1]: https://github.com/tcr/rust-hindley-milner/
//! [2]: https://github.com/rob-smallshire/hindley-milner-python
use cl_ast::Sym;
use core::fmt;
use std::{cell::RefCell, rc::Rc};
/*
Types in Conlang:
- Never type: !
- type !
- for<A> ! -> A
- Primitive types: bool, i32, (), ...
- type bool; ...
- Reference types: &T, *T
- for<T> type ref<T>; for<T> type ptr<T>
- Slice type: [T]
- for<T> type slice<T>
- Array type: [T;usize]
- for<T> type array<T, instanceof<usize>>
- Tuple type: (T, ...Z)
- for<T, ..> type tuple<T, ..> // on a per-case basis!
- Funct type: fn Tuple -> R
- for<T, R> type T -> R // on a per-case basis!
*/
/// A refcounted [Type]
pub type RcType = Rc<Type>;
#[derive(Debug, PartialEq, Eq)]
pub struct Variable {
pub instance: RefCell<Option<RcType>>,
}
#[derive(Debug, PartialEq, Eq)]
pub struct Operator {
name: Sym,
types: RefCell<Vec<RcType>>,
}
/// A [Type::Variable] or [Type::Operator]:
/// - A [Type::Variable] can be either bound or unbound (instance: Some(_) | None)
/// - A [Type::Operator] has a name (used to identify the operator) and a list of types.
///
/// A type which contains unbound variables is considered "generic" (see
/// [`Type::is_generic()`]).
#[derive(Debug, PartialEq, Eq)]
pub enum Type {
Variable(Variable),
Operator(Operator),
}
impl Type {
/// Creates a new unbound [type variable](Type::Variable)
pub fn new_var() -> RcType {
Rc::new(Self::Variable(Variable { instance: RefCell::new(None) }))
}
/// Creates a variable that is a new instance of another [Type]
pub fn new_inst(of: &RcType) -> RcType {
Rc::new(Self::Variable(Variable {
instance: RefCell::new(Some(of.clone())),
}))
}
/// Creates a new [type operator](Type::Operator)
pub fn new_op(name: Sym, types: &[RcType]) -> RcType {
Rc::new(Self::Operator(Operator {
name,
types: RefCell::new(types.to_vec()),
}))
}
/// Creates a new [type operator](Type::Operator) representing a lambda
pub fn new_fn(takes: &RcType, returns: &RcType) -> RcType {
Self::new_op("fn".into(), &[takes.clone(), returns.clone()])
}
/// Creates a new [type operator](Type::Operator) representing a primitive type
pub fn new_prim(name: Sym) -> RcType {
Self::new_op(name, &[])
}
/// Creates a new [type operator](Type::Operator) representing a tuple
pub fn new_tuple(members: &[RcType]) -> RcType {
Self::new_op("tuple".into(), members)
}
/// Sets this type variable to be an instance `of` the other
/// # Panics
/// Panics if `self` is not a type variable
pub fn set_instance(self: &RcType, of: &RcType) {
match self.as_ref() {
Type::Operator(_) => unimplemented!("Cannot set instance of a type operator"),
Type::Variable(Variable { instance }) => *instance.borrow_mut() = Some(of.clone()),
}
}
/// Checks whether there are any unbound type variables in this type.
/// ```rust
/// # use cl_typeck::inference::*;
/// let bool = Type::new_op("bool".into(), &[]);
/// let true_v = Type::new_inst(&bool);
/// let unbound = Type::new_var();
/// let id_fun = Type::new_fn(&unbound, &unbound);
/// let truthy = Type::new_fn(&unbound, &bool);
/// assert!(!bool.is_generic()); // bool contains no unbound type variables
/// assert!(!true_v.is_generic()); // true_v is bound to `bool`
/// assert!(unbound.is_generic()); // unbound is an unbound type variable
/// assert!(id_fun.is_generic()); // id_fun is a function with unbound type variables
/// assert!(truthy.is_generic()); // truthy is a function with one unbound type variable
/// ```
pub fn is_generic(self: &RcType) -> bool {
match self.as_ref() {
Type::Variable(Variable { instance }) => match instance.borrow().as_ref() {
// base case: self is an unbound type variable (instance is none)
None => true,
// Variable is bound to a type which may be generic
Some(instance) => instance.is_generic(),
},
Type::Operator(Operator { types, .. }) => {
// Operator may have generic args
types.borrow().iter().any(Self::is_generic)
}
}
}
/// Makes a deep copy of a type expression.
///
/// Bound variables are shared, unbound variables are duplicated.
pub fn deep_clone(self: &RcType) -> RcType {
// If there aren't any unbound variables, it's fine to clone the entire expression
if !self.is_generic() {
return self.clone();
}
// There are unbound type variables, so we make a new one
match self.as_ref() {
Type::Variable { .. } => Self::new_var(),
Type::Operator(Operator { name, types }) => Self::new_op(
*name,
&types
.borrow()
.iter()
.map(Self::deep_clone)
.collect::<Vec<_>>(),
),
}
}
/// Returns the defining instance of `self`,
/// collapsing type instances along the way.
/// # May panic
/// Panics if this type variable's instance field is already borrowed.
/// # Examples
/// ```rust
/// # use cl_typeck::inference::*;
/// let t_bool = Type::new_op("bool".into(), &[]);
/// let t_nest = Type::new_inst(&Type::new_inst(&Type::new_inst(&t_bool)));
/// let pruned = t_nest.prune();
/// assert_eq!(pruned, t_bool);
/// assert_eq!(t_nest, Type::new_inst(&t_bool));
/// ```
pub fn prune(self: &RcType) -> RcType {
if let Type::Variable(Variable { instance }) = self.as_ref() {
if let Some(old_inst) = instance.borrow_mut().as_mut() {
let new_inst = old_inst.prune(); // get defining instance
*old_inst = new_inst.clone(); // collapse
return new_inst;
}
}
self.clone()
}
/// Checks whether a type expression occurs in another type expression
///
/// # Note:
/// - Since the test uses strict equality, `self` should be pruned prior to testing.
/// - The test is *not guaranteed to terminate* for recursive types.
pub fn occurs_in(self: &RcType, other: &RcType) -> bool {
if self == other {
return true;
}
match other.as_ref() {
Type::Variable(Variable { instance }) => match instance.borrow().as_ref() {
Some(t) => self.occurs_in(t),
None => false,
},
Type::Operator(Operator { types, .. }) => {
// Note: this might panic.
// Think about whether it panics for only recursive types?
types.borrow().iter().any(|other| self.occurs_in(other))
}
}
}
/// Unifies two type expressions, propagating changes via interior mutability
pub fn unify(self: &RcType, other: &RcType) -> Result<(), InferenceError> {
let (a, b) = (self.prune(), other.prune()); // trim the hedges
match (a.as_ref(), b.as_ref()) {
(Type::Variable { .. }, _) if !a.occurs_in(&b) => a.set_instance(&b),
(Type::Variable { .. }, _) => Err(InferenceError::Recursive(a, b))?,
(Type::Operator { .. }, Type::Variable { .. }) => b.unify(&a)?,
(
Type::Operator(Operator { name: a_name, types: a_types }),
Type::Operator(Operator { name: b_name, types: b_types }),
) => {
let (a_types, b_types) = (a_types.borrow(), b_types.borrow());
if a_name != b_name || a_types.len() != b_types.len() {
Err(InferenceError::Mismatch(a.clone(), b.clone()))?
}
for (a, b) in a_types.iter().zip(b_types.iter()) {
a.unify(b)?
}
}
}
Ok(())
}
}
impl fmt::Display for Type {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Type::Variable(Variable { instance }) => match instance.borrow().as_ref() {
Some(instance) => write!(f, "{instance}"),
None => write!(f, "_"),
},
Type::Operator(Operator { name, types }) => {
write!(f, "({name}")?;
for ty in types.borrow().iter() {
write!(f, " {ty}")?;
}
f.write_str(")")
}
}
}
}
/// An error produced during type inference
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum InferenceError {
Mismatch(RcType, RcType),
Recursive(RcType, RcType),
}
impl fmt::Display for InferenceError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
InferenceError::Mismatch(a, b) => write!(f, "Type mismatch: {a:?} != {b:?}"),
InferenceError::Recursive(_, _) => write!(f, "Recursive type!"),
}
}
}